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Abstract

This paper presents the results of a numerical simulation of the interaction between solid particles and
near-wall turbulence. The ¯uid ¯ow in a horizontal channel is solved using direct numerical simulation.
For the particle motion, a Lagrangian approach is used. The particles are relatively large, and cover
several collocation points in the ¯uid. Two-way coupling is used to account for the e�ect of the particles
on the structure of the near-wall turbulence, and on the main stream.

It is shown that the presence of large particles in the near-wall region enhances the intensity of the
carrier phase velocity ¯uctuations. Based on the computational data, it was established that the particles
with large relaxation time move in a random way and do not accumulate along the low velocity streaks,
as smaller particles do. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The motion of particles in turbulent ¯ows and the interaction between particles and the

turbulence have become one of the most interesting topics in ¯uid mechanics.

Available experimental data show that the addition of particles may increase or decrease the

turbulent kinetic energy of the carrier ¯uid. Buyevich and Gupalo (1965) considered a decay of

isotropic turbulence in a ¯ow with small particles and showed that the presence of small

particles provides an additional decay of the turbulence.

Some experiments, e.g. Hetsroni and Sokolov (1971), Tsuji et al (1988), Parthasarathy and

Faeth (1987), Levy and Lockwood (1981), showed that the presence of small particles in
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turbulent ¯ow reduces the turbulent intensity of the carrier ¯uid, and presence of large
particles increases the turbulent intensity. A detailed review is given by Hetsroni (1989). Recent
works, Kaftori et al. (1995a, b), Nino and Garcia (1996) have also well illustrated the particle
entrainment by coherent wall structures and suggest that the nature of interaction may
signi®cantly a�ect the carrier ¯uid, especially very close to the boundary.
Gore and Crowe (1989) proposed the critical parameter dp/L (dp is the particle diameter, L is

the integral length scale of the turbulence) that predicts whether the turbulence will be
augmented or suppressed with the addition of particles. In that study, the augmentation of
turbulent energy by the particles is attributed to the presence of their wakes. However,
experimental work by Hardalupas et al. (1989) showed that particles without wakes (small Rep)
may also increase the turbulent energy.
Vinberg et al. (1991) showed that in anisotropic ¯ows the addition of small particles can

enhance turbulence. Recently Yarin and Hetsroni (1993) showed that the ratio diameter/
turbulence scale does not generalize the experimental data for di�erent particles sizes. They
proposed a simpli®ed theory based on the modi®ed mixing-length theory and turbulent kinetic
energy balance. For coarse particles, the level of ¯uctuations is determined by vortex shedding.
Yarin and Hetsroni (1993) also showed that the turbulent kinetic energy depends only on
bC 3/2

D where CD is the drag coe�cient of the particle, and and b is an empirical constant.
There is a number of direct numerical simulation studies concerning the two-way interaction

of particles with turbulence. Elghobashi and Truesdell (1993) examined the turbulence
modi®cation due to the two-way interaction between decaying turbulence and small dispersed
solid particles. Their results show that the particles can increase the ¯uid turbulence energy.
Pedinotti et al. (1992) carried out direct numerical simulation of particle behaviour in the

wall region, without the feedback e�ects from the particles on the ¯uid motion. They
calculated the ¯ow ®eld in a ¯ume by using a pseudo-spectral direct solution of the Navier±
Stokes equations, in the same way as was done in this investigation. They assumed that the
particle concentration is low enough to allow the use of one-way coupling in the calculations,
i.e. the ¯uid moves the particles but there is no feedback from the particles on the ¯uid
motion. In our present work we concentrated on the two-way coupling, i.e. on how the
particles a�ected the turbulence of the ¯uid. McLaughlin (1994) reviewed recent research on
the techniques of DNS including two-way (feedback) coupling. Some aspects of the direct
numerical simulation were reviewed by Banerjee (1994). Pan and Banerjee (1996), in their
direct numerical simulation, accounted for the particle e�ect by superimposing the Stokes
solution on the continuous-¯ow velocity ®eld. The numerical investigation of the e�ects of
particles on wall turbulence indicates that the ejection±sweep cycle is a�ectedÐprimarily
through suppression of sweeps by the smaller particles and enhancement of sweep activity by
the larger particles, Pan and Banerjee (1997).
Several mechanisms of turbulence modulation may be invoked to explain particle-coherent

structure intractions. These mechanisms may be signi®cantly in¯uenced by both particle±
particle and particle±wall interactions. To clarify the e�ects of such phenomena on particle±
wall interactions, we will focus on turbulent ¯ow carrying particles at an average volume
fraction of 2.6�10ÿ4.
The present study is motivated by recent experiments (Hetsroni and Rozenblit 1994) and has

the primary objective of determining how particles modulate ¯uctuations of the carrier ¯uid in
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the wall region. In this connection, pseudospectral calculations, based on a computer code
developed by Lam and Banerjee 1 (1988), and Lam (1989), have been used to generate the ¯uid
velocity ®eld in a horizontal ¯ume. The boundary conditions on the bottom wall are no-slip
and the boundary conditions at the interface are free-slip. In this study, the motion of each
particle is traced by the Lagrangian method, and the e�ect of each particle on the ¯uid is fed
back into the ¯ow ®eld.
We examine in some detail the two-way coupling and interaction between large particles

(Rep>1) and the turbulence in the near wall region of the open channel turbulent ¯ow. We
use Lam and Banerjee's (1988) method of direct numerical simulation to solve the three-
dimensional, time-dependent Navier±Stokes equations which include all the forces exerted by
the particles on the ¯uid.

2. Mathematical description

The time-dependent, three-dimensional Navier±Stokes and continuity equations are solved in
a rectangular domain, presented in Fig. 1. The streamwise direction is denoted by x1, the
spanwise by x2, and the wall-normal direction by x3, while the velocity components are u1, u2,
u3, correspondingly. The ¯ow is driven by a constant streamwise pressure gradient. Periodic
boundary conditions are imposed in x1 and x2 directions. All the quantities are normalized
with the e�ective shear velocity and the half-depth of the channel. The e�ective shear velocity
is de®ned as u *=ZhP, where P=(1/r)@p/@xi is the mean kinematic pressure gradient, and h
is the half-depth of the channel. The e�ective Reynolds number is de®ned as Re=(u *h/n),
where n is the ¯uid viscosity. The velocity and length are scaled by u * and h, respectively. The
non-dimensional continuity and Navier±Stokes equations for an incompressible Newtonian
¯uid are:

@ui
@xi
� 0; �1�

@ui
@t
� Si � 1

Re
r2ui ÿ @p

@xi
�2�

where @p/@xi is the pressure gradient minus the mean value of the pressure gradient, and Si are
the nonlinear convective terms minus the mean kinematic pressure gradient

S1 � ÿ @u1ui
@xj
� 1; S2 � ÿ @u2uj

@xj
; S3 � ÿ @u3uj

@xj
: �3�

The pressure gradient @p/@xi is eliminated from the equations by taking the curl of Eq. (2) to
give

1 We gratefully acknowledge the help of professor S. Banerjee in providing us with this code.
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@ok

@t
� Eijk

@Sj

@xi
� 1

Re
r2ok �4�

where ok is the vorticity. Taking the curl of Eq. (4) again, one obtains a fourth order equation

@

@t
�r2ui� � r2Si ÿ @

@xi

@Sj

@xj

� �
� 1

Re
r4ui: �5�

Eqs. (4) and (5), for the normal component, i.e. for o3 and u3, are solved ®rst. With u3 and

o3 known, u1 and u2 can be obtained by solving simultaneously

@u1
@x1
� @u2
@x2
� ÿ @u3

@x3
�6�

and

@u2
@x1
ÿ @u1
@x2
� o3: �7�

The pressure ®eld is not needed in the calculation but can be obtained whenever necessary.

The boundary conditions are u1=u2=u3=0 (no-slip) on a wall, and @u1/@x3= @u2/@x3=0,

u3=0 at the free surface.

To represent the solutions in space, ®nite Fourier expansions in the homogeneous (x1 and

x2) directions are used. In the normal direction x3, they are represented by Chebyshev

polynomials, i.e.

f�x1; x2;x3� � Sk1Sk2Sk3 â�k1; k2; n3� � e�k1x1�k2x2� � Tn3�x3�: �8�

The wave numbers k1 and k2 are given by

k1 � 2pn1=L1; k2 � 2pn2=L2 �9�

Fig. 1. Flow geometry for DNS
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where L1 and L2 are the periodicity lengths in the streamwise and spanwise directions,
correspondingly. A full description of the numerical scheme can be found in Lam (1989).
The approximate form of the equation for the motion of a particle is:

mp
d �v

dt
� 3

4
CD

r
rp

1

dP
j �uÿ �vjmp� �uÿ �v�f�H� �mf

D �u

Dt

� 1

2
mf

d

dt
� �uÿ �v� � �mp ÿmf� �g� 6p

dp
2

� �2

m
�t
t0

d

dt
� �uÿ �v��pn�tÿ t��ÿ0:5dt

�10�

where the drag coe�cient is given by White (1991)

CD � 24

Rep
� 6

1� Re0:5p

� 0:4; 0 < Rep < 2 � 105 �11�

and where Rep is the particle Reynolds number

Rep � j �vÿ �ujdp
n

where mp is the mass of the particle, m is the ¯uid viscosity, v is the particle velocity, f(H) is the
coe�cient of wall e�ect on the Stokes drag, H is the distance from the center of the particle to
the wall, mf is the mass of the ¯uid displaced by the particle, g is the acceleration due to
gravity, d/dt is the time rate of change following the particle, Du/Dt is the total acceleration of
the ¯uid as seen by the particle. The coe�cient of wall e�ect is given by Kim and Karrila
(1991) for a particle moving parallel to a wall

f�H� � 1

1ÿ 9
16

dp
2H
� 1
8

dp
2H

� �3
�12�

and for a particle moving perpendicular to a wall

f�H� � 1

1ÿ 9
8

dp
2H

� �
� 1
2

dp
2H

� �3
�13�

In Eq. [10] it is customary to neglect the Basset term, the last term on the r.h.s. of the
equation, in order to conserve computational time.
When the particle is small, in the sense that RepW1, the e�ect of the particle on the ¯ow ®eld

can be fed back explicitly at every time-step through a point force acting on the ¯uid. Such
small particles are subgrid size, and, therefore, the force has to be distributed to the
surrounding mesh points, see Pan and Banerjee (1996). In the case of large particles, which
cover many mesh, or collocation, points in the ¯uid, to get a detailed resolution of the ¯ow
pattern around a coarse particle, one needs to consider a very ®ne distortion of space in the
vicinity of the particle, that requires a rather large number of nodes. Because of the computer
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memory limitations, we could not get a high resolution in the vicinity of a single particle. In
our calculations, particles occupied two nodes in the x1-direction, and four nodes in the x2-
direction. The number of nodes occupied by a particle in the x3-direction (normal to the
bottom of the channel), depends on the position of the particle in the ¯ow and takes up to 35
nodes near the wall.
The general calculation scheme is:

1. The ¯ow ®eld is brought to a stationary state without particles.
2. Particles are introduced into this ¯ow ®eld, and their motion is calculated with a one-way

coupling, i.e. by using Eqs. (10)±(13). The particles are allowed to reach stationary
distribution with regards to their position, velocities etc. At this stage, the particles were
considered as points. Since the particles are relatively large, each covers a number of
collocation points, and is moved about by an implicit scheme. The ¯uid velocity at the
various locations in the particle (which is known from step 1) is averaged with a three-
dimensional cubic spline interpolation scheme, and this velocity is then applied on the
particle through Eq. (10).

3. Two-way coupling is now introduced. To do that all the velocities in the collocation points
occupied by the particle (known from step 1) were made to be equal by using Eq. (2) with
an additional source term Spi. This source term is introduced into Eq. (2):

@ui
@t
� Si � 1

Re
r 2ui ÿ @p

@xi
ÿ Spi �14�

and this equation is solved until all collocation points in the particle have the same velocity.
This required iteration, since one does not know a priori the exact form of the source term
Spi which will make the ¯uid velocity equal to the particle velocity at the collocation points
occupied by the particles. In this connection, the iteration process is as following: at time tn
the solution of the ¯ow ®eld (without particles) is uin and the source term is Sin. The
particle, at this time step, is moving at velocity vpn. Now all collocation points inside the
particle are assigned a velocity vpn. Thus, a new ¯ow-®eld is obtained with velocity u (1)

in

everywhere except inside the particles where the velocities are vpn. Numerically, the whole
procedure is equivalent to a series of iterations of the Navier±Stokes equations Eqs. (14).
The iteration stops at t= NDt when speci®ed convergence criteria are satis®ed. The step
for iteration, Dt, is the step which converges the source term to the desired value required
to match the boundary conditions on the particle. This step is di�erent from the time step
Dt for proceeding with the ¯uid and particle motion computation. While Dt is related to the
stability and the speed of convergence of the iteration, Dt is determined by the accuracy
requirement for calculation of ¯uid motion, i.e. the smallest time scale, one wants to resolve
in ¯uid ¯ows.

In the present work, the iteration was stable at Dt=0.01 Dt. Convergence criteria are set such
that the relative error of velocities, averaged over all the collocation points inside and on the
particle, is less than 0.5%.
Particle velocity is calculated through an implicit scheme. It is necessary to evaluate the

instantaneous ¯uid velocity at the location of the particle accurately. In this connection, a three
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dimensional cubic spline interpolation scheme was used. This scheme was applied in the three
coordinate directions at the particle location. The new position of the particle was calculated as

�xp�tn�1� � �xp�tn� � 1

2
Dt� �v�tn�1� � �v�tn��: �15�

In the present study, the turbulent channel ¯ow of Reynolds number Re *=85.4 is
simulated. The Re *=2hu*/n is based on shear velocity u *, and the half depth of the ¯ume.
The bulk Reynolds number Re=2hU/n in this case is 2600, where 2 h is the ¯ow depth,
2 h=37 mm, U is the mean streamwise velocity. The calculations were carried out for clean
water and for particle-laden ¯ow with dimensionless particle diameter d+=8.5 and d + =17,
and concentration c=2.6�10ÿ4. The calculations were carried out in a computational domain
of 1074�537� 171 wall units in the x1, the x2 and the x3 directions with a resolution of
128� 128� 129. A nonuniform distribution of collocation points is used in the wall-normal
(x3) direction due to the nature of the Chebyshev polynomials, and the ®rst collocation point
away from the wall is at x +

3 =0.1. The density of particles was 1050 kg/m3

3. Results and discussion

3.1. Comparison with experimental data

As a check on the numerical simulation, the data taken from the experiments of Kaftori et
al. (1995a, b) are used to compare with numerically calculated values. The simulations were
performed for the particle-laden ¯ow with dimensionless particle size d+=8.5 and
concentration c=2.6�10ÿ4. The comparison is shown in Fig. 2 for the streamwise, u 01, velocity

Fig. 2. Comparison of streamwise turbulence intensities of numerical simulation with the experimental data,
d + =8.5.
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Fig. 3. Comparison of wall-normal turbulence intensities of numerical simulation with the experimental data,
d + =8.5.

Fig. 4. Comparison of Reynolds stress of numerical simulations with the experimental data, d + =8.5.
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¯uctuations, in Fig. 3 for the wall normal velocity ¯uctuations, u 03, and in Fig. 4 for Reynolds
stress, u 01u 03. The solid line represents the DNS results and the points represent the experimental
values with the same particle size and concentration. The velocity ¯uctuations and wall normal
coordinate, x3, are normalized by the wall friction velocity, u *. The numerical results of u 01 and
u 01u 03 distribution agree quite well with the experimental data, particularly in the near wall
region at x+

3 R5. The numerical results of u 03 distribution reach reasonable agreement at
x+
3 >5.

Fig. 5. Mean streamwise velocity in wall variables: ÐÐ clean water; ±�± d + =8.5;±± d + =17.

Fig. 6. Dimensionless streamwise velocity ¯uctuations: ÐÐ clean water; ±�± d + =8.5;±± d + =17.
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3.2. E�ect of particle size on the turbulent velocity ®eld

The DNS results are shown in Fig. 5±9 in wall variables, and the results for clean water are

presented by a solid line, the results for particle - laden ¯ow are presented by dashed lines.

Fig. 5 shows the e�ect of particles on the mean streamwise velocity. The usual clean ¯ow

pro®les U+=x+
3 (x+

3 R10) and U+=2.5 `n x+
3 +5.0 (x +

3 >10) are also plotted (dotted

line) for comparison. For the ¯ow with particles d+=8.5 in the region x +
3 >10 the mean

velocity decreases. This e�ect is similar to the rough wall e�ects as reported by White (1991).

For d+=17 particles in the region x+
3 <10 the mean velocity increases. This is due to the

Fig. 7. Dimensionless wall normal velocity ¯uctuations: ÐÐ clean water; ±�± d + =8.5;±± d + =17.

Fig. 8. Dimensionless spanwise velocity ¯uctuations: ÐÐ clean water; ±�± d + =8.5;±± d + =17.
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fact that the lower part of the particle moves faster than the surrounding ¯uid. Unlike the case
with the particles d + =8.5, the particles d + =17 do not behave like wall roughness.
Dimensionless streamwise turbulence intensity is shown in Fig. 6. The changes in the

streamwise velocity ¯uctuations seem not signi®cant in the near wall region at x +
3 R40. The

small changes in the u 01 indicate that the particles closely follow the ¯uid motion in the
streamwise direction. Unlike this case, the changes in wall normal, Fig. 7, and spanwise
velocity ¯uctuations, Fig. 8, increase when the particle size d + increases. The Reynolds shear
stress is shown in Fig. 9. The signi®cant enhancement in the Reynolds stress was observed,
when the particle size changed from d + =8.5 to d + =17. The zone of the signi®cant
in¯uence of the d + =17 particles on Reynolds stress is about x +

3 =100.

Fig. 9. Dimensionless Reynolds shear stress: ÐÐ clean water; ±�± d + =8.5;±± d + =17.

Fig. 10. Distribution of particles in the x1, x2 plane. Numerical simulations.
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3.3. Particle motion in the boundary layer

Particle size may play an important role in the motion of a particle in turbulent ¯ows. For

d + =8.5 the particles distribution in x1, x2 plane is shown in Fig. 10, and distribution in x1,

x2 and x2, x3 plane is shown in Fig. 11. An interesting result of the present study is that

particles are distributed uniformly, i.e. do not tend to segregate in the low speed streaks. This

is in complete agreement with our experimental observations. An example of the typical

situation observed from plan views of the ¯ow in the ¯ume is shown in Fig. 12. This

observation indicates that the tendency of particles to agglomerate into the streaks depends on

Fig. 11. Distribution of particles in the x1, x3 and x2, x3 plane. Numerical simulations.

Fig. 12. Distribution of particles in the x1, x2 plane. Experimental data.
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the particle size and ¯ow conditions. Reviews for particle behaviour in turbulent ¯ow can be
found in McCoy and Hanratty (1977) and Papavergos and Hedley (1984), where the
experimental and theoretical results are presented. A key parameter is the particle relaxation
time which is a dimensionless measure of particle inertia, and re¯ects how closely particles
follow ¯uid streamlines. Pedinotti et al. (1992) performed a DNS of particle behaviour in the
wall region of a turbulent channel ¯ow. They found that maximum sorting is obtained for
values of t +

p =3. For smaller values of t +
p the particles tend to distribute uniformly along

the bed, and the same happens for larger values of t +
p .

4. Conclusions

This study examines the modulation of turbulence due to the two-way coupling between
near-wall region of turbulent ¯uid and coarse particles. It has been shown that the coarse
particles signi®cantly modify the velocity ¯uctuations of the carrier ¯uid, and an augmentation
of intensity of turbulence and Reynolds stress increases with an increase of particle diameter. It
has been demonstrated that the particles with great value of relaxation time do not accumulate
along the low-speed streaks.
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